Interactively Guiding Semi-Supervised Clustering via Attribute-Based Explanations
نویسندگان
چکیده
Unsupervised image clustering is a challenging and often illposed problem. Existing image descriptors fail to capture the clustering criterion well, and more importantly, the criterion itself may depend on (unknown) user preferences. Semi-supervised approaches such as distance metric learning and constrained clustering thus leverage user-provided annotations indicating which pairs of images belong to the same cluster (must-link) and which ones do not (cannot-link). These approaches require many such constraints before achieving good clustering performance because each constraint only provides weak cues about the desired clustering. In this paper, we propose to use image attributes as a modality for the user to provide more informative cues. In particular, the clustering algorithm iteratively and actively queries a user with an image pair. Instead of the user simply providing a must-link/cannot-link constraint for the pair, the user also provides an attribute-based reasoning e.g. “these two images are similar because both are natural and have still water” or “these two people are dissimilar because one is way older than the other”. Under the guidance of this explanation, and equipped with attribute predictors, many additional constraints are automatically generated. We demonstrate the effectiveness of our approach by incorporating the proposed attribute-based explanations in three standard semisupervised clustering algorithms: Constrained K-Means, MPCK-Means, and Spectral Clustering, on three domains: scenes, shoes, and faces, using both binary and relative attributes.
منابع مشابه
An Effective Semi-Supervised Clustering Framework Integrating Pairwise Constraints and Attribute Preferences
Both the instance level knowledge and the attribute level knowledge can improve clustering quality, but how to effectively utilize both of them is an essential problem to solve. This paper proposes a wrapper framework for semi-supervised clustering, which aims to gracely integrate both kinds of priori knowledge in the 598 J. L. Wang, S.Y. Wu, C. Wen, G. Li clustering process, the instance level...
متن کاملModel Selection for Semi-Supervised Clustering
Although there is a large and growing literature that tackles the semi-supervised clustering problem (i.e., using some labeled objects or cluster-guiding constraints like “must-link” or “cannot-link”), the evaluation of semi-supervised clustering approaches has rarely been discussed. The application of cross-validation techniques, for example, is far from straightforward in the semi-supervised ...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014